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Abstract. The differential cross-section for electron-hydrogen atom collisions in the presence of a linearly
polarized laser field is studied as a function of a scattering angle of low energy electron by employing
second-Born approximation (SBA). Detailed analysis is performed in no forward scattering angle.

PACS. 03.75.Pp Atom lasers – 34.50.Rk Laser-modified scattering and reactions – 34.80.Qb Laser-
modified scattering

1 Introduction

Laser-assisted electron-atom scattering offers the possibil-
ity of observing various multiphoton phenomena at rela-
tively low laser intensities and as an important process in
understanding stellar atmospheres, Laboratory discharges
and plasmas. With the availability of lasers it has be-
come possible to make detailed studies of these differen-
tial cross-sections, not only for single-photon exchanges,
but also for multiphoton processes. The challenge for the-
ory lies in accurately treating each of electron-target,
electron-laser and laser-target interactions. Perturbative
treatments may be used if one of these dominates the oth-
ers. In an early work on free-free scattering, for example,
Kroll and Watson [1] treated the laser-electron interac-
tion with higher order terms in the Born series, while the
dressing of the target by the field was neglected, to ob-
tain a formula that is valid when the frequency ω of the
laser field is much smaller than the kinetic energy of the
incident electron. The experimental data concerning the
large-angle scattering are in reasonable agreement with
the Kroll-Watson-type approximations (KWA), which ne-
glect the internal degrees of freedom of the atom. In this
low-frequency approximation, the differential cross-section
for free-free scattering is expressed as the product of the
field-free differential cross-section evaluated at shifted ini-
tial and final electron momenta and a factor that depends
on the field and the electron momentum transfer. the
derivation of the KWA breaks down at critical geometries
where the direction of the electric field is perpendicular to
the momentum transfer, but the differential cross-sections
for these geometries are expected to be very small [1].

Several experiments have been performed, in which the
exchange of one or more photons between the electron-
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atom system and the laser field has been observed [2–7].
Moreover, the laser field introduces new parameters into
the description of the collision such as its intensity, its
frequency, and its polarization. At present, almost all the
free-free experiments have been performed with a CO2

laser as radiation field (�ω = 0.117 eV) and used helium
and argon as atomic-target. For such cases a number of
experiments have verified qualitatively the predictions of
the KWA at large scattering angles [2]. In an early experi-
ments on argon and helium targets, at critical geometries,
where the laser polarization is almost perpendicular to
the momentum transfer, Wallbank and Holmes [3–5] have
however measured angular distributions larger by several
orders of magnitude than those predicted by KWA. They
suggested that the disagreement could be due to the po-
larization of the target by the field and/or its dressing
effects (the effects of the internal degrees of freedom of
the atom).

The aim of this work is to give new analysis about our
previous works [8,9] in particular for no forward scattering
angles where the most experiments were performed and
the results are qualitatively agree with KWA.

The paper is structured as follows. In Section 2 we
present the general formation of laser-assisted inelastic
electron-atom collisions in the case of linear polarization
of low-energy electrons. An account is then given of the
techniques that we have used to evaluate the scattering
amplitudes. Section 3 contains a detailed of our numer-
ical results as well as their physical interpretation and
interest. Unless otherwise stated atomic units (au) are
used throughout.

2 Theory, results and discussion

The process in the course of which � photons from the laser
field are exchanged, while the inelastic (elastic scattering
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and excitation) collision takes place, can be described by
the following equation:

e−(ki) + H(1s) + ��ω −→ H(nl) + e−(kf ), (1)

which represents the collision of an incoming electron with
momentum ki, which is incident on the hydrogen atomic-
target (initially in its ground state) in the presence of an
intense laser field. The field is treated classically as sin-
gle mode and spatially homogeneous, which means that it
varies little over the atomic range and that the dipole ap-
proximation is valid. Working in the Coulomb gauge, we
have for the vector potential of a field propagating along
the ẑ-axis and represented in the collision plane (x̂ − ŷ)

A(t) = A0

[
x̂ cos(ωt+ ϕ) + ŷ sin(ωt) tan

(η
2

)]
, (2)

with the corresponding electric field

E(t) = E0

[
x̂ sin(ωt+ ϕ) − ŷ cos(ωt) tan

(η
2

)]
, (3)

where E0 = ωA0/c, E0 and ω are the peak electric field
strength and the laser angular frequency, respectively.
Here η measures the degree of ellipticity of the field and
we have the particular cases of linear polarization (η = 0)
and circular polarization (η = π/2) are easily recovered.
Here ϕ denotes the initial phase of the laser field. We can
recast the electric laser field in terms of its spherical com-
ponents by

E(t) = E0

∑
ν=±1

iνε̂ν exp(−iν(ωt+ ϕ)), (4)

where ε̂ν = (1/2)[x̂ + iνŷ tan(η/2)] is the unitary polar-
ization vector.

The energy conservation relation corresponding to the
laser-assisted inelastic collisions of equation (1) reads

Eki + Ei + ��ω = Ef + Ekf
, (5)

where Ei and Ef are, respectively, the ground and final
state energies of the atomic hydrogen target, while Eki =
k2

i /2 and Ekf
= k2

f/2 represent, respectively the kinetic
energy of the incident and scattered electron.

The interaction between the projectile and the laser
field is treated exactly and its solution is given by the non-
relativistic Volkov wave function χp(r0, t) [10,11], where
k is the projectile wave vector and r0 represents the free
electron coordinate.

For the laser-target interaction, since we are interested
by fields which have electric strengths smaller than the
atomic unit (E0 � 5 × 109 Vcm−1) and frequencies dif-
ferent from the atomic transition energies, then the per-
turbation theory is the most appropriate method to solve
the interaction process. If one restricts oneself to the first
order, the ‘dressed’ wave function Φn(r, t) is well-known
(see [8–11]). Here r is the coordinate of the hydrogen tar-
get electron and n is the principal quantum number.

Remembering that if we consider a collision kinemat-
ics, where the incident electron is fast and exchange effects

are small, we shall, as a first approximation, carry out a
first-Born treatment of the scattering process. The first-
Born S-matrix element for the direct inelastic collision
from the ground state of the target to a final state of en-
ergy Ef , in the presence of the laser field is given, by the
expression

SB1
f,i = −i

∫ +∞

−∞
dt〈 χkf

(r0, t)Φf (r1, t) | Vd(r0, r1)|
× χki(r0, t)Φi(r1, t)〉, (6)

where Vd(r0, r1) = −1/r0 + 1/r01 is the direct electron-
atom interaction potential, with r01 = |r0 − r1|, χki(r0, t)
and χkf

(r0, t) are respectively the Volkov wave functions
of the incident and scattered electrons in the presence of
the laser field. Φi(r1, t) and Φf (r1, t) are respectively the
‘dressed’ atomic wave functions describing the fundamen-
tal and final states. This type of contribution to different
scattering processes has been previously computed in var-
ious instances [12–14]. By expanding the integrand in a
Fourier series and integrating over t, we can recast equa-
tion (6) in the form

SB1
f,i = i(2π)−1

+∞∑
�=−∞

δ(Ekf
+Ef −Eki −Ei−�ω) fB1,�

f,0 (∆),

(7)
where � is the number of photons emitted during the col-
lision, so that positive values of � corresponding to ab-
sorption and negative ones to emission and momentum
transfer ∆ = ki − kf . The first-Born scattering ampli-
tude, f B1 ,�

f ,i (∆), is corresponding to the process i −→ f
accompanied by the transfer of � photons, can be split
in an electronic and an atomic amplitudes. They can be
written as

fB1,�
f,i (∆) = fB1,�

elec (∆) + fB1,�
atom(∆) (8)

with

fB1,�
elec (∆) = − 2

∆2
J�(λ)〈 ψf (r) | Vd(r0, r)|ψi(r) 〉, (9)

fB1,�
atom(∆) = f1(∆) + f2(∆), (10)

f1(∆) = − i

∆2

∑
n

(
J�+l(λ)
ωni + ω

− J�−l(λ)
ωni − ω

)

×Mni〈ψf |Ṽd(∆, r)|ψn〉 (11)

and

f2(∆) = − i

∆2

∑
n

(
J�−l(λ)
ωfn + ω

− J�+l(λ)
ωfn − ω

)

×Mfn〈ψn|Ṽd(∆, r)|ψi〉 (12)

where
Ṽd(∆, r) = exp(i∆ · r) − 1 (13)

J� is an ordinary Bessel function of order �. The terms
fB1,�

elec (∆) and fB1,�
atom(∆) are called, respectively ‘electronic’
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(which correspond to the interaction of the laser field with
the projectile only) and ‘atomic’ (which include the atomic
dressing effects and thus describe the distortion of the
target by the electromagnetic radiation). Here M±

n′m =
E0〈ψn′ |ε̂± ·r|ψm〉 are the dipole coupling matrix elements,
ωnn′ = En − En′ are the atomic transition frequencies,
λ = ∆ · α0 and ψn is a target state of energy En in the
absence of an external field.

It should be noted that the sums over intermediate
states appearing in the expressions (11) and (12) can be
divided in two classes because of the selection rules arising
from the matrix elementsMn,n′ . Indeed, the first sum only
involves intermediate states with angular momentum �′ =
0; the second sum only involves intermediate states with
the final angular momentum � = �′ ± 1, where �′ is the
angular momentum of intermediate state.

The first-Born differential cross-sections, which ac-
counts for the ‘dressing’ effects due to the dipole distortion
of the target atom by the laser field and corresponds to
the various multiphoton processes, are given by

(
dσB1,�

f,i /dΩ
)

=
kf

ki
|fB1,�

f,i (∆)|2, (14)

where the amplitude fB1,�
f,i is given by equation (8).

If only the ‘electronic’ term retained, which ignores
the ‘dressing’ of the target (has the familiar form ob-
tained by studying laser-assisted potential scattering in
the first Born approximation (FBA)), the first-Born dif-
ferential cross-section for elastic scattering and excitation
process would be given by

(
dσB1,�

f,i /dΩ
)

no dressing
=
kf

ki
|fB1

f,i (∆)|2J2
� (λ), (15)

where the quantity |fB1
f,i (∆)|2 is just the field-free first-

Born differential cross-section corresponding to the scat-
tering process (i,ki) −→ (f,kf ).

It convenient to use the contribution of the higher or-
der of the Born serie and exchange effects for the slow
incident electron, in inelastic electron-atom process in the
presence of a laser field. As an example, the second-order
contribution to the S-matrix element for electron-atom
collisions from the ground state to a final state of energy
Ef , in the direction channel and in the presence of a laser
field accompanied by the transfer of � photons, can be
given by

SB2
f,i = −i

∫ +∞

−∞
dt

∫ +∞

−∞
dt′

× 〈χkf
(r0, t)Φf (r, t)|Vd(r0, r)G

(+)
0 (r0, r, t; r′0, r′, t′)

× Vd(r′0, r′)|χki(r
′
0, t

′)Φi(r′, t′)〉, (16)

where G(+)
0 is the causal propagator. It should be noted

that this term as it stands, is second-order in the electron-
atom interaction potential Vd and contains atomic wave
functions corrected to first-order in the laser field strength
E0. If one retains a global first-order correction in E0 for

the target “dressed” states, one finds that SB2
f,i is the sum

of two terms which are respectively of zeroth and first-
order in E0.

The leading matrix element, SB2,0
f,i , describes the col-

lision of a Volkov electron by the undressed atom, i.e.,
the second-order contribution to the S-matrix element for
laser-assisted collisions of zeroth-order in E0 is approxi-
mated in terms of a simpler second-Born amplitude by

SB2,0
f,i = −(2π)−1i

×
�=+∞∑
�=−∞

δ(Ekf
− Eki + Ef − Ei − �ω)fB2,�,0

f,i (∆), (17)

with
fB2,�,0

f,i (∆) = J�(λ)fB2
f,i (∆), (18)

where

fB2
f,i (∆) = − 1

π2

×
∫ +∞

0

q2dqdξ′q
〈ψf |Ṽd(∆f , r)Gc(ξ′)Ṽd(∆i, r)|ψi〉

∆2
i∆

2
f

(19)

is the filed-free second-Born inelastic amplitude evaluated
at the shifted momenta ∆i and ∆f . Here

Gc(ξ′) =
∑

n

|ψn〉〈ψn|
ξ′ − En

is the Coulomb Green’s function with argument ξ′ = Eki+
Ei − Eq + �ω.

In the same way, the contribution to the S-matrix
element for laser-assisted collisions of first-order in E0,
is given by shifting the pole of the integrand, respec-
tively, below the real ω-axis by a small positive quantity
ε −→ 0+,

SB2,1
f,i = −(2π)−1i

×
∞∑

l=−∞
δ(Ekf

− Eki + Ef − Ei − �ω) fB2,�,1
f,i (∆), (20)

with

fB2,�,1
f,i (∆) = iJ ′

L(λ)
[
f1(∆) + f2(∆) + f3(∆)

]
, (21)

where

f1(∆) = − 1
(2π)2

∑
n,n′

∫
dq

fB1
f,n′(∆f ) fB1

n′,n(∆i)Mn,i

(Eq − Eki + ωn′,f − iε)ωn,i
,

(22)

f2(∆) = − 1
(2π)2

∑
n,n′

∫
dq

Mf,n′fB1
n′,n(∆f ) fB1

n,i (∆i)
ωn′,f (Eq − Eki + ωn,i − iε)

(23)
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and

f3(∆) = − 1
(2π)2

×
∑
n,n′

∫
dq

fB1
f,n′(∆f ) Mn′,nf

B1
n,i (∆i)

(Eq − Eki + ωn′,f − iε)(Eq − Eki + ωn,i − iε)
.

(24)
The study of second-order corrections to atomic s-p am-
plitudes show that these corrections tend to a constant
value of order k−1

i as ∆ becomes small, i.e., at small scat-
tering angle and thus are rather unimportant in this angu-
lar range. However, this is precisely the scattering angular
region, which we interest for E0 � 1 au, because the first-
order amplitude is adequate to provide a significant ‘dress-
ing’ effects, which supply a contribution of order ∆−1 and
thus rule the differential cross-section, while at larger scat-
tering angles the target ‘dressing’ becomes less important,
and under non-resonant conditions one also can model the
atom by a structureless center of force. For this, in our pre-
vious works, we have neglected the second-order contribu-
tion to the S-matrix element for laser-assisted collisions
calculated in first-order in E0 (for more detailed analysis,
see Refs. [8,9]). When this approximation is adopted, we
may concentrate our discussion on the computation of the
dominant term, SB2,0

f,i , in laser-assisted collisions and its
computation. Thus, the electron-atom interaction ampli-
tudes with the transfer of � photons may be written, in
SBA, as

f �
f,i(∆) = fB1,�

f,i (∆) + fB2,�,0
f,i (∆), (25)

where fB1,�
f,i (∆) and fB2,�,0

f,i (∆) are respectively, the first-
order and second-order amplitudes, which are given by
equations (8) and (18). In other case, i.e. when the scatter-
ing angle is not small, the S-matrix element contribution
for laser-assisted collisions of first-order in E0, becomes
significant and the equation (25) can be written in the
form

f �
f,i(∆) = fB1,�

f,i (∆) + fB2,�,0
f,i (∆) + fB2,�,1

f,i (∆), (26)

where fB2,�,1
f,i (∆) represents the first-order correction in E0

of the second-order scattering amplitude, which is given
by expression (21).

The main problem in evaluating the scattering ampli-
tudes corresponding to the second-order contributions to
the S-matrix element for laser-assisted elastic scattering
and excitation process, consists
(i) in performing the summation over the intermediate

states. In order to calculate exactly the correspond-
ing radial amplitudes without further approximation,
we have used two different methods based in Sturmian
approach similar to the ones described in our previ-
ous works [8,9]. The Sturmian approach allows us to
take into account exactly the bound-continuum-state
contributions, which are of crucial importance for elec-
tron impact excitation at intermediate energies. These
methods of computation constitute an important ad-
vantage in the present context as compared to earlier
ones relying on the closure approximation [15];

(ii) in the presence of the intermediate wave vector q in
the argument of the Bessel function. Indeed, the in-
tegrals, in expressions (19), (22), (23) and (24), over
the virtual projectile states χq(r0, t) with wave vec-
tor q is prohibitively difficult, which is actually zero
at some values of incident electron energy and accord-
ingly for some values of scattered electron energy. Each
of these possible intermediate transitions will be char-
acterized by a resonance behavior, i.e the denomina-
tor of the matrix elements entering the exact formula
equations (17) and (20) being close to zero. Instead,
we shall overcome this difficulty by determining the
exact upper boundary of the integrals (19), (22), (23)
and (24) over the virtual projectile [8]. However, one
can overcome this difficulty by choosing a particular
geometry, namely the geometry in which the polariza-
tion vector is parallel to the direction of the incident
electron. In the latter SB2,0

f,i (∆) and SB2,1
f,i (∆) can be

easily evaluated by numerical integration [16].

In elementary atomic processes identical particles are
expected on physical grounds to respond differently to a
strong external driving field, the effects due to the par-
ticles identity (exchange effects) must become less sig-
nificant. Basically, the different response to the external
perturbation to some extent makes the particles distin-
guishable. It is well-known from field-free electron atom
collision theory that exchange effects lose their impor-
tance when the velocity of the incoming electron is con-
siderably larger than that of the atomic electrons. In this
case, two identical particles are in quite different physi-
cal states. However, in electron-atom collisions, where free
and bound electrons are present, a strong driving field
should affect in a different way the dynamics of the vari-
ous electrons, and thus a reduction of exchange scattering
amplitude should take place. Below we give a derivation
of this effect taking the electron-atom collision in the pres-
ence of a laser field as an example.

The contribution for laser-assisted inelastic collisions
to the S-matrix of exchange scattering which leads to some
conceptual difficulties but would not significantly alter the
results of the present discussion. We have consider in the
present paper only the landing term of g�

f,i, the exchange
amplitude for electron–atom collisions with the transfer
of � photons. It is known the exchange effects in colli-
sions are important at low relative velocities, while the
FBA is an essentially high-energy approximation. Thus,
the FBA does not seem the best approximation to look
into the effects we are interested in. In favor of the FBA
there are, however, the relative simplicity of the analyti-
cal treatment. In the same way, we may calculate the ex-
change scattering matrix element in FBA and in presence
of laser field,

SB1,exc
f,i = −i

∫ +∞

−∞
dt〈χkf

(r1, t)Φf (r0, t)|

− 1
r0

+
1
r10

|χki(r0, t)Φi(r1, t)〉, (27)
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Evaluating the time integration yields,

SB1
f,i = i(2π)−1

+∞∑
�=−∞

δ(Ekf
+Ef −Eki −Ei−�ω)gB1 ,�

f ,0 (∆),

(28)
where gB1 ,�

f ,0 (∆) is the first-Born exchange scattering am-
plitude corresponding to the process i −→ f accompa-
nied by the transfer of � photons. For this, in the case
of the elastic scattering the exchange scattering ampli-
tude is done in the closure approximation by using refer-
ence [17] and within. On other hand, in the case of exci-
tation when the analytical calculations becomes non easy,
we shall approximate the first-Born exchange amplitude
for laser-assisted inelastic scattering by its dominant part,
coming from the interaction term (|r0 − r1|)−1, the scat-
tering potential and its given by [8,9]

gB1,�
f,i � − 1

2π

�′=+∞∑
�′=−∞

(i)�′J�−�′(λ)
∫
dr0dr1 exp(−ikf · r1)

× ψi(r0)
{
J�′

[
a0 · (r0 − r1)

]|r0 − r1|
}

× ψi(r) exp(iki · r0), (29)

with a0 = ωα0 in au.
Thus, when exchange effects are to be considered in

laser-assisted electron-atom collisions, the first-order am-
plitude fB1,�

f,i (∆) is replaced by

fB1,�
f,i (∆) + gB1,�

f,i (∆), (30)

where gB1,�
f,i (∆) may be written in the form

gB1,�
f,i (∆) � J�(λ)gOch

f,i (ki,∆) , (31)

with

gOch
f,i (ki,∆) =

− 2
∆2

∫
dr exp(i∆.r)|ψi(r)|2 =

∆2

k2
i

fB1
f,i (∆) (32)

is the exchange amplitude in Ochkur approximation. Here
fB1

f,i (∆) is the field-free first-Born amplitude for i −→ f
transition process.

The second-Born differential cross-section correspond-
ing to the various multiphoton processes, with the transfer
of � photons, are given by

(dσ�
f,i

dΩ

)
=
kf

ki

[
1
4
|f �

f,i + gB1,�
f,i |2 +

3
4
|f �

f,i − gB1,�
f,i |2

]
(33)

does not depend on the initial phase ϕ of the laser field,
due to the inability of the collision time to be defined, as
a result of the approximation of the projectile wavepacket
by a monoenergetic beam of infinite duration [18].

When comparing theoretical results to the experimen-
tal cross-sections, one first has to obtain cross-sections
over a fine mesh of intensities and then convolute them

with a realistic spatiotemporal distribution of intensities
of the laser beam. The ponderomotive acceleration of the
projectile when penetrating and leaving the interaction re-
gion should also be taken into account, unless the pulse is
extremely short.

As an application of our results (33) we consider the
case of the electron-atomic hydrogen inelastic (elastic and
excitation process) collision. Our detailed calculations are
evaluated for a geometry in which the polarization vector
of the field E is parallel to the direction of the momen-
tum transfer ∆, varying thus with the scattering angle θ,
and with the number of photons transferred in the colli-
sion. The reason we adopt this geometry is that the an-
gular part of the scattering amplitude may be simplified
and, what is more important, because for small momen-
tum transfers, when approximately ki ⊥ ∆, the coupling
of the colliding system with the field has its minimal value
for E0 ‖ ki, and its maximal value for E0 ‖ ∆. Although in
a realistic experiment the choice of the geometry E0 ‖ ∆
causes inconveniences because of the necessity of rotat-
ing the laser beam for each � and θ, the data concern-
ing the experimental measurements of the elastic-electron
helium-atom collision for this geometry have been recently
reported [3]. Moreover, in the case of small-frequency, i.e.
small-momentum transfer collisions, the results referring
to the geometry E0 ‖ ∆ should be very close to those ob-
tained for E0 ⊥ ki. Note, however, that through simplified,
the model contains all ingredients needed for the discus-
sion, our results are analyzed by estimating the first and
second-Born differential cross-sections, where the electric
field strength is kept fixed at 108 Vcm−1(0.02 au).

In Figure 1 we present the differential cross-sections
corresponding to the elastic electron-atomic hydrogen
scattering with no net transfer of photons (� = 0), as a
function of the scattering angle θ and for incident energies
Eki = 20 eV. According to the domain of validity of the
treatment used for taking into account the laser-atom in-
teraction, the Nd-NAG laser frequency will be taken to be
�ω = 1.17 eV (0.043 au). These parameters are such that
the target dressing gives the main contribution. For small
scattering angle, i.e. small momentum transfer ∆, the dif-
ferential cross-section corresponding to the electronic term
much smaller than differential cross-section without laser
field for |�| ≥ 1 and the soft photon approximation is
not valid. More precisely, we consider cases in which the
energies of the ‘projectile’ electrons are the same as the
ones for the field-free case [then � = 0 in the energy conser-
vation relation, Eq. (5)]. It then makes sense to compare
the differential cross-section’s, computed within the SBA
and FBA, for the laser-assisted and field-free collisions.
The modifications of the cross-sections then directly re-
flect the role of the dressing of the projectile-target system
by the external laser field. We are working in linear polar-
ization where the laser-assisted differential cross-section
only depends on the orientation of the polarization unit
vector ε̂ [14]. The results obtained by using the SBA with
exchange effects included (Eq. (33)) are compared to the
total and electronic cross-section in FBA, and to the cor-
responding results without laser fields.
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Fig. 1. Differential cross-section for elastic scattering with the
transfer of no photon as a function of scattering angle (θ).
The incident electron energy is 20 eV, the laser frequency is
1.17 eV and the electric field strength is 108 Vcm−1. (- - - -)
Second-Born approximation; ( . . . . . . .) first-Born approxima-
tion, (.......) results obtained by neglecting the dressing of the
target; ( ) laser-off results.

As noted before the inclusion of higher order terms of
the direct scattering matrix and of exchange only increases
the results at small angles, where the differential cross-
sections being the overall change in their relative magni-
tudes, in particular for the SBA. This is one interesting
typical signatures of the dressing of the electron-target
system in the differential cross-section and what clearly
shows the effects of internal structure of the atomic target
when the energies of the primary electron is weak. Then
suggest taking fully into account the target distortion in-
duced by a laser field. Such a distorted atom also acts on
the projectile by a long-range dipole potential (∼1/r2),
which requires a non-perturbative treatment of laser-atom
interaction. The long-range dipole potential affects mainly
the distant collisions, which contribute to near forward
scattering. For collisions at larger scattering angles (until
some scattering angles) the target dressing remain impor-
tant because of the presence of second-term of Born series
in our results.

This point is, also illustrated in the set of Figures 2a
and 2b, in which we show the influence of changing the
photon number, everything else being kept fixed, on the
scattering angular distribution. As shown in Figures 2a
and 2b, the laser assisted differential cross-section in SBA
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Fig. 2. (a) As Figure 1, but with the transfer of one photon
� = 1. (b) As (a), but for emission of one photon � = −1.
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deviates very little from the FBA one at small scattering
angle below 3◦. At higher scattering angle however, sig-
nificant changes take place, as shown in Figures 2a and
2b, which are obtained for an absorption and emission of
one photon, respectively. The angular distribution is then
modified as the absorption and emission are now split with
different magnitudes. Several interesting points, character-
istic of this class of laser-assisted collisions, can be made
at this stage.

(i) The presence of the laser breaks the regular behav-
ior of the angular distribution. This remains true even
for the SBA and with/without transfer of laser pho-
tons. Accordingly, besides the dynamical polarization
of the target states [change of the interior structure
of the atom]; the projectile states are also modified,
the overall of the regular behavior with respect to the
scattering angle being lost.

(ii) The magnitude of the cross-section for no net exchange
of photons is significantly smaller than in the field free
case. This results from the fact that the laser itself
does not contribute to the elastic scattering. In fact,
the laser redistributes the interior target structure and
the diffused electrons in new channels associated to
indices � 
= 0 in the energy conservation relation (5),
which are accessible in the ’dressed’ continuum of the
atomic target (appearance of an intermediate structure
of the continuum more ordered).

The role of the laser field strength intensity in the SBA
for the net absorption and emission of one photons is rep-
resents in Figures 2a and 2b. These figures show that
the laser-assisted differential cross-section differs markedly
from the field free one. This behavior can be traced back
to the fact that the argument of the Bessel functions J�(λ),
entering the expressions of the amplitudes (9), (11), (12),
(18), (21) and (24), grows with E0 and varies with the scat-
tering angle. Accordingly, at higher field strengths, every
other laser parameter being fixed, one explodes more ze-
ros of the Bessel functions when varying the scattering
angle. This clearly gives rise to the observed increase in
the number of minima.

Another interesting point is the fact that the over-
all magnitude of the cross-section corresponding to the
difference between SBA and FBA at no forward scatter-
ing angles increases and it becomes very significant for
4◦ ≤ θ ≤ 18◦. Although this trend is expected for laser-
assisted processes from the leading matrix element SB2,0

f,i

it is by no means easily deduced from the structure of the
transition amplitude equations (23) and (24) (in fact, the
opposite trend is observed for � = 0, where the amplitudes
are dominated by the Bessel function J0(λ)). Again, the
magnitude of the argument of the Bessel functions J�(λ) is
directly proportional to E0 and, contrarily to J0(λ), which
decreases from unity when |λ| increases, the other func-
tions J�(λ) start to increase from zero and grow as |λ|�.
Although this argument cannot account for the details of
the variations of the differential cross-section in FBA and
in SBA with the laser field it provides a far estimate of
the overall changes observed with respect to field-free.
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Fig. 3. (a) As Figure 2a, but with the transfer of two pho-
tons � = 2. (b) As Figure 2b, but for emission of two photons
� = −2.
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The set of Figure 3 also shows the inadequacy of the
simplified approaches in which one neglects the dressing
of the atomic targets by the field. Comparing again our
results of SBA with those obtained with the FBA, on ob-
serves that, although the shape of the angular distribution
is fairly well reproduced, the overall magnitude of the dif-
ferential cross-section is significantly underestimated. In
addition, one observes that, contrarily to the FBA the
discrepancies are notable in large scattering angle when
the second-term of the Born series is held account in the
differential cross-section computations. This clearly shows
that the collision dynamics is strongly affected by the dy-
namical polarization of the atomic target at large scatter-
ing angles. Thus, these tendencies are even amplified when
turning to higher net number of exchanged photons. The
most remarkable fact, however, are the important changes
of magnitudes of the DCS with the second-order correc-
tion of atomic s-p amplitudes.

A second-Born approximation, for a given electric
strength and laser photon energy, � = 0 cross-sections
are two orders of magnitude larger for scattering in the
forward direction than for � = ±1, due to the strong s-p
coupling at small scattering and for low incident electron
energies. Indeed, in the forward direction the dominant
contribution to the � = 1(−1) cross-section gives the terms
corresponding to the absorption (emission) of one photon
and a successive interaction with the projectile, and vice
versa through the intermediate states. While the last term
is slightly smaller than the former one for the � = 1 cross-
section, it is larger in the case of the � = −1 cross-section
due to the strong resonant coupling of ns and n′p states.
This coupling becomes too strong when the incident elec-
tron energies are weak, from where utility of the higher
order of the Born series. The SBA term is added to the
two terms of the FBA to interfered constructively in both
cases. The term coming from the SBA is significant for
� = 0 through the Bessel function what is not the case for
|�| = 1. The situation is different at θ 
= 0.

At present, almost all the free-free experiments have
used CO2 laser field and argon/helium as atomic target.
For such cases the Kroll-Watson sum rule is valid. In
general, the experimental measurements of the differ-
ential cross-section are taken in the range of the scattering

angle non close to the forward direction [6]. Moreover an
experimental program to study the free-free collusion from
atomic hydrogen will require the collaboration of several
experimental groups if they are to be successful [2]. For
that, we had some results where the dressing effects are
significant for the scattering angle close to zero and we
believe that our results should serve as an incentive to
perform such laser-assisted collisions experiments. Indeed,
beyond the mere verification of the theory, such exper-
iments would provide interesting information about the
internal structure of dressed atoms, much in the spirit of
ordinary atomic spectroscopy.
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